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A new unified methodology was proposed in Finkelstein and Kastner (2007) [39] to derive
spatial finite-difference (FD) coefficients in the joint time–space domain to reduce
numerical dispersion. The key idea of this method is that the dispersion relation is com-
pletely satisfied at several designated frequencies. We develop this new time–space
domain FD method further for 1D, 2D and 3D acoustic wave modeling using a plane wave
theory and the Taylor series expansion. New spatial FD coefficients are frequency indepen-
dent though they lead to a frequency dependent numerical solution. We prove that the
modeling accuracy is 2nd-order when the conventional ð2MÞth-order space domain FD
and the 2nd-order time domain FD stencils are directly used to solve the acoustic wave
equation. However, under the same discretization, the new 1D method can reach
ð2MÞth-order accuracy and is always stable. The 2D method can reach ð2MÞth-order accu-
racy along eight directions and has better stability. Similarly, the 3D method can reach
ð2MÞth-order accuracy along 48 directions and also has better stability than the conven-
tional FD method. The advantages of the new method are also demonstrated by the results
of dispersion analysis and numerical modeling of acoustic wave equation for homogeneous
and inhomogeneous acoustic models. In addition, we study the influence of the FD stencil
length on numerical modeling for 1D inhomogeneous media, and derive an optimal FD
stencil length required to balance the accuracy and efficiency of modeling. A new time–
space domain high-order staggered-grid FD method for the 1D acoustic wave equation
with variable densities is also developed, which has similar advantages demonstrated by
dispersion analysis, stability analysis and modeling experiments. The methodology pre-
sented in this paper can be easily extended to solve similar partial difference equations
arising in other fields of science and engineering.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Finite-difference (FD) methods have been widely used in seismic modeling (e.g. [1–4]) and seismic migration (e.g. [5–8])
since these methods are fairly easy to implement. They also require relatively small memory and computation time com-
pared to other purely numerical methods such as finite elements (e.g. [9]) and modified direct solution methods (DSM)
[49,50]. A 2nd-order FD scheme is usually used for approximating temporal derivatives to perform wave field recursion
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effectively and stably; this, however, limits the accuracy of modeling. A smaller time step or grid size may increase the mod-
eling precision but will require more computation time. Many methods, such as high-order, staggered-grid and implicit
methods, have been developed to improve the accuracy which do not markedly increase the computation cost.

High-order FD on the space derivatives is a popular method to increase modeling accuracy (e.g. [10–19]). A low-order FD
algorithm uses a shorter operator but needs more grid points for discretization. A high-order FD algorithm uses a longer
operator but needs fewer grid points. It has been demonstrated that high-order FD schemes have practical advantages when
applied to the scalar wave equation [10]. The FD schemes with accuracy of any or all orders have been derived for the first-
order derivatives and used to solve wave equations (e.g. [10,11]). FD coefficients are generally determined by a Taylor series
expansion (e.g. [10,43]) or by optimization (e.g. [11,44–46,48,51,52]). The effect of reducing the formal order of accuracy of a
FD scheme in order to optimize its high-wavenumber performance was investigated [47] using the 1D nonlinear unsteady
inviscid Burgers’ equation and it was found that the benefits of optimization do carry over into nonlinear applications. FD
operators, accounting explicitly for the amplitude spectrum, give more accurate results than Taylor or optimum operators
in the elastic wave equation modeling [45]. The modified FD operators were derived by optimally minimizing the numerical
dispersion of P- and S-velocities as an indirect consequence of their minimizing the error of synthetic seismograms, and the
accuracy of synthetic seismograms computed using the modified operators was greatly improved as compared to conven-
tional FD operators [51]. Using the Taylor expansion, the FD method with any even-order accuracy has been developed
for arbitrary-order derivatives [14] and utilized to simulate wave propagation in two-phase anisotropic media [19].

Compared with conventional-grid FD methods, staggered-grid FD methods have greater precision and better stability and
have been widely used in seismic modeling. An initial work for modeling of elastic wave equations was reported in [20]. A
second-order velocity-stress staggered FD schemes for modeling SH-wave and P-SV wave propagation in generally hetero-
geneous media was proposed [21,22]. This method was used to simulate elastic wave propagation in 3D media (e.g. [23–28]).
When the medium possesses discontinuities with large contrasts, modeling of elastic waves with an explicit FD scheme on a
staggered grid causes instability problems. Rotated staggered grids, where all the medium parameters are defined at appro-
priate positions within an elementary cell for the essential operations, have also been used in the FD method [29–32].

Implicit FD methods have also been developed to improve the modeling accuracy. There are two kinds of implicit method.
One is the implicit FD on temporal derivatives for the elastic wave equations [33]. It expresses a temporal derivative value at
some point at a future time in terms of the values of the variable at that point and at its neighboring points at present time,
past times, and future times. The implicit method for temporal derivatives has been used successfully in seismic migration
algorithms [34]. The other implicit method is the implicit FD on spatial derivatives (e.g. [41,42]). This method expresses the
spatial derivative value at some point in terms of the function values at that point and at its neighboring points and the
derivative values at its neighboring points. A compact FD method [2] is such an implicit method, which has been widely ap-
plied in modeling (e.g. [35–38]).

Since the explicit high-order FD on temporal derivatives is usually unstable in the wave equation modeling (e.g. [17]),
spatial derivatives are used to replace high-order temporal derivatives (e.g. [10,17]) to increase the accuracy of temporal
derivatives with additional computational cost. Our goal is to derive new FD coefficients for spatial derivatives that can in-
crease the accuracy of acoustic wave modeling without increasing calculation amount. Generally, most FD methods deter-
mine the FD stencils for spatial derivatives only in the space domain. However, the seismic wave propagation calculation is
done both in space and time domains. If these stencils are directly used to solve the wave equations, the dispersion will al-
ways exist and may be very large. To address this issue, a unified methodology in [39] has been proposed to derive the FD
coefficients in the joint time–space domain. The key idea of this method is that the dispersion relation is completely satisfied
at designated frequencies; thus several equations are formed and the FD coefficients are obtained by solving these equations.
Thus one can obtain dispersion free simulation at a given frequency. However, since different frequencies require different
dispersion criterion, this method may not be very useful in practical applications which require time domain simulation
where the source spectrum contains a continuous band of frequencies. This FD method was developed further for the 1D
lossless and boundless wave equation in [40] and its spatial FD coefficients were determined at one designated frequency
to obtain arbitrary-order accuracy.

In this paper, we develop a unified methodology similar to the method [39,40] and employ the Taylor series expansion of
dispersion relation to derive the FD coefficients in the joint time–space domain. We prove that the modeling accuracy is of
2nd-order when the conventional ð2MÞth-order space domain FD and the 2nd-order time domain FD stencils are directly
used to solve the acoustic wave equation. The new spatial FD coefficients for the 1D acoustic wave equation modeling are
determined by the Courant number and the space point number and are independent of frequency. We demonstrate that
while spatial difference coefficients of 1D in [39] depend on the space point number, the Courant number and frequencies,
our difference coefficients for space derivatives are determined by the space point number and the Courant number only. For
the 1D modeling, the accuracy can be improved from 2nd-order of the conventional method to ð2MÞth-order of the new
method when 2M þ 1 points are involved in the spatial derivatives and 3 points in the temporal derivatives. This conclusion
can be obtained from [40]. Equations for solving 1D spatial FD coefficients derived in our paper are equivalent to those in
[40]. However, we derive their explicit expressions for the first time. For 2D modeling, spatial difference coefficients in
[39] depend on the space point number, the Courant number, frequencies and angles. Our difference coefficients for space
derivatives in 2D are determined by the space point number, the Courant number and the angle. Moreover, we find an opti-
mal angle p=8 which enables the modeling to reach ð2MÞth-order accuracy along eight directions; therefore, our difference
coefficients are independent of angle. For the new 3D method, ð2MÞth-order accuracy can be reached along 48 directions
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also. The advantages of the new 1D and 2D methods are demonstrated by dispersion analysis, stability analysis and numer-
ical modeling. In addition, we study the influence of FD stencil length on numerical modeling for inhomogeneous media, and
the optimal FD stencil length to balance the modeling accuracy and efficiency. We also develop a new time–space domain
high-order staggered-grid FD method for the acoustic wave equation where the density is inside a partial derivative. Note
that although the FD coefficients derived from time–space domain dispersion relations in this paper are frequency indepen-
dent, they still lead to frequency dependent solution.

The structure of this paper is as follows. First, we analyze the accuracy of the conventional FD stencils for the acoustic
wave equation. Then, we derive equations for solving new spatial FD coefficients. Dispersion and stability analyses are car-
ried out for both the conventional and the new methods. Numerical modeling both in homogeneous and inhomogeneous
media are performed and compared for the conventional and the new methods. In the discussion section, we discuss the
influence of FD stencil length and choice of an optimal FD stencil length and develop a new time–space domain high-order
staggered-grid FD method for the acoustic wave equation with variable densities. Finally, we draw conclusions based on
these analyses.

2. Accuracy analysis of conventional FD stencils for acoustic wave equations

We start our analysis with the constant density 1D acoustic wave equation or scalar wave equation in homogenous media
given by
@2p
@x2 ¼

1
v2

@2p
@t2 ; ð1Þ
where p ¼ pðx; tÞ is a scalar wave field, and v is the velocity.
Generally, an explicit high-order FD on temporal derivatives requires large computer memory and is usually unstable (e.g.

[17]), the following 2nd-order FD is usually used,
@2p
@t2 �

d2p
dt2 ¼

1
s2 �2p0

0 þ p�1
0 þ p1

0

� �� �
; ð2Þ
where
pn
m ¼ pðxþmh; t þ nsÞ; ð3Þ
h is the grid size, s is the time step. Generally, the modeling accuracy is improved by using a high-order FD on spatial deriv-
atives; a ð2MÞth-order FD formula is given by
@2p
@x2 �

d2p
dx2 ¼

1

h2 a0p0
0 þ

XM

m¼1

am p0
�m þ p0

m

� �" #
: ð4Þ
Substituting Eqs. (2) and (4) into (1) and rearranging it, we have
a0p0
0 þ

XM

m¼1

am p0
�m þ p0

m

� �
� h2

v2s2 p�1
0 þ p1

0

� �
� 2p0

0

� �
: ð5Þ
Note that in the conventional method, the FD coefficients on spatial derivatives are determined in the space domain
alone. Using the plane wave theory, we let
pn
m ¼ ei½kðxþmhÞ�xðtþnsÞ� ¼ eiðkx�xtÞeiðmkh�nxsÞ; ð6Þ
where k is the wavenumber, x is the angular frequency, i ¼
ffiffiffiffiffiffiffi
�1
p

. Substituting Eq. (6) into (4) and simplifying it, we have
�k2 � 1

h2 a0 þ 2
XM

m¼1

am cosðmkhÞ
" #

: ð7Þ
Using the Taylor series expansion for cosine functions, we obtain
�k2 � a0

h2 þ
2

h2

XM

m¼1

am 1þ
X1
j¼1

ð�1Þj ðmhkÞ2j

ð2jÞ!

" #
: ð8Þ
By comparing the coefficients of k0
; k2

; . . . ; k2M
; M þ 1 equations can be obtained to solve for FD coefficients a0; a1; . . . ; aM

[14,19]. Then, the error of the FD on the spatial derivatives is derived from Eq. (8) as follows:
2

h2

XM

m¼1

am

X1
j¼Mþ1

ð�1Þj ðmhkÞ2j

ð2jÞ!

" #
: ð9Þ
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Therefore, we obtain the following equation
1

h2 a0 þ 2
XM

m¼1

am cosðmkhÞ
" #

¼ �k2 þ 2

h2

X1
j¼Mþ1

ð�1Þj
XM

m¼1

am
ðmhkÞ2j

ð2jÞ!

" #
: ð10Þ
Similarly, we obtain
1
s2 �2þ 2 cosðxsÞ½ � ¼ �x2 þ 2

s2

X1
j¼2

ð�1Þj ðxsÞ2j

ð2jÞ!

" #
: ð11Þ
When 1D space domain and time domain FD formulas are directly used to solve the 1D acoustic wave equation, the abso-
lute error can be obtained from Eq. (1) by using Eqs. (2), (4) and (6),
e ¼ 1

h2 a0 þ 2
XM

m¼1

am cosðmkhÞ
" #

� 1
v2s2 �2þ 2 cosðxsÞ½ �

�����
�����: ð12Þ
Substituting Eqs. (10) and (11) and v ¼ x=k into Eq. (12), we have
e ¼ 2
X1

j¼Mþ1

ð�1Þj
XM

m¼1

am
m2jk2j

ð2jÞ! h2j�2

" #
� 2

X1
j¼2

ð�1Þj r2j�2k2j

ð2jÞ! h2j�2

" #�����
�����; ð13Þ
where
r ¼ vs
h
: ð14Þ
Since the minimum power of h in the error function (13) is 2, the FD accuracy is 2nd-order. Therefore, when we use the
ð2MÞth-order space domain FD and the 2nd-order time domain FD stencils to solve the 1D acoustic wave equation, the accu-
racy is of 2nd-order. It is fairly obvious that the conclusion is the same for 2D and 3D acoustic wave equations. It is worth-
while to note that increasing M may decrease the magnitude of FD errors but may not increase the order of accuracy. The
main reason is that the FD stencils are designed in the space and time domains, respectively, but the wave equation must
be solved in both the space and the time domains simultaneously.

3. Time–space domain high-order FD method for acoustic wave equations

Here, we propose a new FD scheme by determining the coefficients for the spatial derivatives in the joint time–space
domain following some novel ideas outlined in [39]. However, the details of our approach are different in that we derive
coefficients that are better suited to modeling in time domain comprising a continuous spectrum of frequencies. In our
paper, the spatial and temporal derivatives are treated separately first, and then combined using the wave equation, whereas
in [40] both derivatives for the 1D wave equation are approximated concurrently while already embedded in the equation.

3.1. 1D acoustic wave equation

The method in [39] was proposed to derive the FD coefficients in the joint time–space domain. The key idea of this meth-
od is that the dispersion relation is completely satisfied at designated frequencies; thus several equations are formed and the
FD coefficients are obtained by solving these equations. It is obvious that different designated frequencies give different FD
coefficients. Since the source spectrum contains a continuous band of frequencies, our method determines the FD coeffi-
cients by using the Taylor series expansion in the dispersion relation. Our FD coefficients of 1D are, however, equivalent
to those in [40]. The details of our derivation are outlined below.

Substituting Eqs. (6) and (14) into (5) and simplifying it, we obtain
a0 þ 2
XM

m¼1

am cosðmkhÞ � 2r�2½cosðrkhÞ � 1�: ð15Þ
Using the Taylor series expansion for cosine functions, we have
a0 þ 2
XM

m¼1

am 1þ
X1
j¼1

ð�1Þj ðmkhÞ2j

ð2jÞ!

" #
� 2r�2

X1
j¼1

ð�1Þj ðrkhÞ2j

ð2jÞ!

" #
: ð16Þ
Comparing coefficients of k2j, we obtain
a0 þ 2
XM

m¼1

am ¼ 0; ð17aÞ

XM

m¼1

m2jam ¼ r2j�2 ðj ¼ 1;2; . . . ;MÞ: ð17bÞ
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Eqs. (17a) and (17b) are equivalent to Eqs. (15a) and (15b) in [40]. We can rewrite Eq. (17b) as the following matrix form
10 20 � � � M0

12 22 � � � M2

..

. ..
. ..

. ..
.

12M�2 22M�2 � � � M2M�2

2
66664

3
77775

12a1

22a2

..

.

M2aM

2
66664

3
77775 ¼

1
r2

..

.

r2M�2

2
66664

3
77775: ð18Þ
The coefficient matrix of Eq. (18) is a Vandermonde matrix. Solving these equations, we obtain
am ¼
Q

16n<mðr2 � n2Þ
Q

m<n6Mðn2 � r2Þ
m2
Q

16n<mðm2 � n2Þ
Q

m<n6Mðn2 �m2Þ ðm ¼ 1;2; . . . ;MÞ: ð19Þ
Since it is necessary that r 6 1 in the numerical modeling, Eq. (19) can be rewritten as
am ¼
ð�1Þmþ1

m2

Y
16n6M;n – m

n2 � r2

n2 �m2

����
����: ð20Þ
The coefficient a0 can be calculated by Eq. (17a). When r ¼ 0, the FD coefficients are the same as those of the conventional
method (see in [14,19]). That is, the conventional method is just a special case of the new method.

The error function of Eq. (12) can be rewritten as follows:
e ¼ 1

h2 a0 þ 2
XM

m¼1

am cosðmkhÞ � 2
r2 ðcosðrkhÞ � 1Þ

" #�����
�����: ð21Þ
Using Eqs. (16), (17a) and (17b), we have
e ¼ 2

h2

XM

m¼1

am

X1
j¼Mþ1

ð�1Þj ðmkhÞ2j

ð2jÞ!

" #
� 2

h2 r�2
X1

j¼Mþ1

ð�1Þj ðrkhÞ2j

ð2jÞ!

" #�����
����� ¼

X1
j¼Mþ1

2ð�1Þj

ð2jÞ!
XM

m¼1

m2jam � r2j�2

 !
k2jh2j�2

�����
�����: ð22Þ
This is the error function of this new method. Since the minimum power of h in the error function (22) is 2M, the accuracy of
FD is of ð2MÞth-order.

3.2. 2D acoustic wave equation

The 2D acoustic wave equation is
@2p
@x2 þ

@2p
@z2 ¼

1
v2

@2p
@t2 : ð23Þ
Since the same FD is usually used for spatial derivatives, we let
@2p
@x2 �

d2p
dx2 ¼

1

h2 a0p0
0;0 þ

XM

m¼1

am p0
�m;0 þ p0

m;0

� 	" #
; ð24aÞ

@2p
@z2 �

d2p
dz2 ¼

1

h2 a0p0
0;0 þ

XM

m¼1

am p0
0;�m þ p0

0;m

� 	" #
; ð24bÞ
where
pn
m;j ¼ pðxþmh; zþ jh; t þ nsÞ: ð25Þ
The 2nd-order FD stencil for the temporal derivative is
@2p
@t2 �

d2p
dt2 ¼

1
s2 �2p0

0;0 þ p�1
0;0 þ p1

0;0

� 	h i
: ð26Þ
Using Eqs. (24a), (24b) and (26), Eq. (23) is changed as follows:
1

h2 2a0p0
0;0 þ

XM

m¼1

am p0
�m;0 þ p0

m;0 þ p0
0;�m þ p0

0;m

� 	" #
� 1

v2s2 �2p0
0;0 þ p�1

0;0 þ p1
0;0

� 	h i
: ð27Þ
Let
pn
m;j ¼ ei½kxðxþmhÞþkzðzþjhÞ�xðtþnsÞ�: ð28Þ
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Substituting Eq. (28) into (27) and simplifying it, we obtain
a0 þ
XM

m¼1

am½cosðmkxhÞ þ cosðmkzhÞ� � r�2½�1þ cosðxsÞ�: ð29Þ
Let
kx ¼ k cos h; kz ¼ k sin h; ð30Þ
where h is the propagation direction angle of plane wave. Then Eq. (29) can be written as
a0 þ
XM

m¼1

am½cosðmkh cos hÞ þ cosðmkh sin hÞ� � r�2½�1þ cosðxsÞ�: ð31Þ
Using the Taylor series expansion for cosine functions, we have
a0 þ
XM

m¼1

am 2þ
X1
j¼1

ð�1Þj m2jðcos2j hþ sin2j hÞðkhÞ2j

ð2jÞ!

" #
�

X1
j¼1

ð�1Þj r2j�2ðkhÞ2j

ð2jÞ!

" #
: ð32Þ
Comparing coefficients of k2j, we obtain
a0 þ 2
XM

m¼1

am ¼ 0; ð33aÞ

XM

m¼1

m2jðcos2j hþ sin2j hÞam ¼ r2j�2 ðj ¼ 1;2; . . . ;MÞ: ð33bÞ
These equations indicate that the coefficient am is a function of h. To obtain a single set of coefficients, we need to choose an
optimal angle. Let
f ðhÞ ¼ ðcos hÞ2j þ ðsin hÞ2j
: ð34Þ
It is obvious that
f ðhÞ ¼ f ðnp=2� hÞ; f ðp=8Þ ¼ f ðp=8� np=4Þ: ð35Þ
If h ¼ p=8 is used to solve Eq. (33b), the FD modeling can reach the highest ð2MÞth-order accuracy along eight directions:
h ¼ ð2n� 1Þp=8 ðn ¼ 1;2; . . . ;8Þ. Therefore, we solve Eq. (33b) to obtain am by using h ¼ p=8. Then, a0 can be obtained by
Eq. (33a).

3.3. 3D acoustic wave equation

The 3D acoustic wave equation is
@2p
@x2 þ

@2p
@y2 þ

@2p
@z2 ¼

1
v2

@2p
@t2 : ð36Þ
When using the same FD for spatial derivatives, we have
@2p
@x2 �

d2p
dx2 ¼

1

h2 a0p0
0;0;0 þ

XM

m¼1

am p0
�m;0;0 þ p0

m;0;0

� 	" #
; ð37aÞ

@2p
@y2 �

d2p
dy2 ¼

1

h2 a0p0
0;0;0 þ

XM

m¼1

am p0
0;�m;0 þ p0

0;m;0

� 	" #
; ð37bÞ

@2p
@z2 �

d2p
dz2 ¼

1

h2 a0p0
0;0;0 þ

XM

m¼1

am p0
0;0;�m þ p0

0;0;m

� 	" #
; ð37cÞ
where
pn
m;l;j ¼ pðxþmh; yþ lh; zþ jh; t þ nsÞ: ð38Þ
The 2nd-order FD stencil for the time derivative is
@2p
@t2 �

d2p
dt2 ¼

1
s2 �2p0

0;0;0 þ p�1
0;0;0 þ p1

0;0;0

� 	h i
: ð39Þ
Using Eqs. (37a)–(37c) and (39), Eq. (36) is changed as follows:
1

h2 3a0p0
0;0;0 þ

XM

m¼1

am p0
�m;0;0 þ p0

m;0;0 þ p0
0;�m;0 þ p0

0;m;0 þ p0
0;0;�m þ p0

0;0;m

� 	" #
� 1

v2s2 �2p0
0;0;0 þ p�1

0;0;0 þ p1
0;0;0

� 	h i
: ð40Þ
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Let
Fig. 1.
s = 0.00
pn
m;j ¼ ei½kxðxþmhÞþkyðyþlhÞþkzðzþjhÞ�xðtþnsÞ�: ð41Þ
Take Eq. (41) into (40) and simplify it as follows:
3a0 þ
XM

m¼1

2am½cosðmkxhÞ þ cosðmkyhÞ þ cosðmkzhÞ� � 2r�2½�1þ cosðxsÞ�: ð42Þ
Let
kx ¼ k cos h cos /; ky ¼ k cos h sin /; kz ¼ k sin h; ð43Þ
where h is the plane wave propagation angle measured from the horizontal plane perpendicular to z-axis, / is the azimuth of
the plane wave. Then Eq. (42) is written as
3
2

a0 þ
XM

m¼1

am½cosðmkh cos h cos /Þ þ cosðmkh cos h sin /Þ þ cosðmkh sin hÞ� � r�2½�1þ cosðxsÞ�: ð44Þ
Using the Taylor series expansion for cosine functions, we have
3
2

a0 þ
XM

m¼1

am 3þ
X1
j¼1

ð�1Þj m2jðcos2j h cos2j /þ cos2j h sin2j /þ sin2j hÞðkhÞ2j

ð2jÞ!

" #
�

X1
j¼1

ð�1Þj r2j�2ðkhÞ2j

ð2jÞ!

" #
: ð45Þ
Comparing coefficients of k2j, we obtain
a0 þ 2
XM

m¼1

am ¼ 0; ð46aÞ

XM

m¼1

m2jðcos2j h cos2j /þ cos2j h sin2j /þ sin2j hÞam ¼ r2j�2 ðj ¼ 1;2; . . . ;MÞ: ð46bÞ
These equations indicate that the coefficients am is a function of h and /. To obtain a single set of coefficients, we can choose
an optimal angle. Let
f ðh;/Þ ¼ cos2j hðcos2j /þ sin2j /Þ þ sin2j h: ð47Þ
It is obvious that
f ðh;/Þ ¼ f ðmp� h;np=2� /Þ; f ðp=4;p=8Þ ¼ f ðp=4� np=2;p=8� np=4Þ: ð48Þ
If h ¼ 0 and / ¼ p=8 are used to solve Eqs. (46b), the FD modeling can reach the highest ð2MÞth-order accuracy along 48
directions:
h ¼ ðm� 1Þp; / ¼ ð2n� 1Þp=8 ðm ¼ 1;2; n ¼ 1;2; . . . ;8Þ; h ¼ ð2m� 1Þp=8; / ¼ ðn� 1Þp=2 ðm ¼ 1;2; . . . ;8; n ¼ 1;2;3;4Þ.
Therefore, we solve Eq. (46b) to obtain am by using h ¼ 0 and / ¼ p=8. Then, a0 can be obtained by Eq. (46a).
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Plot of 1D dispersion curves of the conventional and the new methods for different space point numbers 2M + 1, M = 2, 4, 10, 20, v = 3000 m/s,
1 s, h = 10 m.
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4. Dispersion analysis

4.1. 1D dispersion analysis

We define a parameter d to describe 1D dispersion of FD by using Eq. (15) as follows:
Fig. 2.
0.35, 0.

Fig. 3.
0.15, 0.
d ¼ vFD

v ¼ 2
rkh

sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
XM

m¼1

am sin2ðmkh=2Þ

vuut : ð49Þ
If d equals 1, there is no dispersion. If d is far from 1, a large dispersion will occur. Because kh is equal to p at the Nyquist
frequency, kh only ranges from 0 to p when calculating d.

Next, we compare the conventional and the new methods by the dispersion curves for different space point numbers,
velocities and time steps.

Fig. 1 shows the variation of the dispersion parameter d with kh for different space point numbers. The involved param-
eters are listed in the figure. This figure demonstrates that

� Dispersion decreases with the increase of M.
� For the conventional method, d nearly equals 1 when kh < 0:6. The area where d nearly equals 1 does not extend with the

increase of M. That is, increase of M decreases the magnitude of the dispersion error without increasing the accuracy order.
� For the new method, the area where d nearly equals 1 obviously extends with the increase of M.
� The accuracy of the new method is greater than that of the conventional method.
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Plot of 1D dispersion curves of the conventional and the new methods for different velocities, v = 2500, 3500, 4500 and 5500 m/s, that is, r = 0.25,
45 and 0.55, s = 0.001 s, h = 10 m, M = 20.
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Plot of 1D dispersion curves of the conventional and the new methods for different time steps, s = 0.0005, 0.0010, 0.0015 and 0.0020 s, that is, r =
30, 0.45 and 0.60. And s = 0.0025 and 0.0030 s, that is, r = 0.75 and 0.70, are added for the new method. v = 3000 m/s, h = 10 m, M = 20.
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Fig. 2 shows the variation of the dispersion parameter d with kh for different velocities. The involved parameters are listed
in the figure also. From this figure, we can see that the dispersion curves change greatly with the variation of velocity for the
conventional method, while they change slightly for the new method. The dispersion characteristics of the new method,
mainly dependent on M, are more stable than the conventional method.

Fig. 3 illustrates the effect of time step on dispersion. For the conventional method, the dispersion becomes stronger
with the increase of time step. Moreover, a lager time step, such as 0.0025 s, 0.0030 s in this example, makes the recursion
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Fig. 4. Plot of 2D dispersion curves of the conventional and the new methods for different propagation angles, h = 0, p/4, p/8, and different space point
numbers 2M + 1, M = 2, 4, 10 and 20. v = 3000 m/s, s = 0.001 s, h = 10 m.
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unstable. However, the new method is always stable and its dispersion decreases with the increase of time step. Therefore,
the new method can adopt a larger time step and reach greater accuracy.

4.2. 2D dispersion analysis

2D dispersion dðhÞ is defined as follows by using Eq. (31)
Fig. 5.
s = 0.00
d ¼ vFD

v ¼ 2
rkh

sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
XM

m¼1

amðsin2ðmkh sin h=2Þ þ sin2ðmkh cos h=2ÞÞ

vuut : ð50Þ
Since dðhÞ ¼ dðhþ p=2Þ; dðhÞ is a periodic function with a period of p=2. Considering dðhÞ ¼ dðp=2� hÞ, we only calculate dðhÞ
with the variation of h from 0 to p=4.

Fig. 4 shows the 2D dispersion curves of the conventional and new methods along three directions for different space
point numbers. From the figure, we can see that

� With the increase of wavenumber, the dispersion generally increases and the accuracy decreases.
� With the increase of the space point number, the dispersion generally decreases and the accuracy increases. However, the

area where d nearly equals 1 does not extend with the increase of M for the conventional method. This area does extend
for the new method.

� The dispersion of the new method is generally smaller than that of the conventional method.

Fig. 5 shows the 2D dispersion curves of the conventional and the new method along five directions when M = 10, which
also demonstrates that the accuracy of the new method is greater than that of the conventional method.

4.3. 3D dispersion analysis

3D dispersion dðh;/Þ is defined as follows by using Eq. (44)
d ¼ vFD

v ¼ 2
rkh

sin�1


r2
XM

m¼1

amðsin2ðmkh sin h=2Þ þ sin2ðmkh cos h sin /=2Þ þ sin2ðmkh cos h cos /=2ÞÞ

vuut : ð51Þ
5. Stability analysis

5.1. 1D stability condition

The 1D recursion equation of FD can be obtained from Eq. (5) as follows:
p1
0 ¼ ðr2a0 þ 2Þp0

0 þ r2
XM

m¼1

am p0
�m þ p0

m

� �
� p�1

0 : ð52Þ
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Plot of 2D of dispersion curves of the conventional and the new methods. The propagation angles are 0, p/16, 2p/16, 3p/16 and 4p/16. v = 3000 m/s,
1 s, h = 10 m, M = 10.
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Using the conventional eigenvalue method of stability analysis, we let
q0
m ¼ p�1

m ; U0
m ¼ p0

m; q
0
m

� �T ¼W0eikmh;U1
m ¼ ðp1

m; q
1
mÞ

T ¼W1eikmh: ð53Þ

According to Eqs. (52) and (53), we obtain
W1 ¼ GW0 ¼
g �1
1 0


 �
W0; ð54Þ
where G is a transition matrix,
g ¼ 2þ 2r2
XM

m¼1

am½cosðmkhÞ � 1�: ð55Þ
When the absolute values of the transition matrix eigenvalues are less than or equal to 1, the recursion is stable. If jgj 6 2, the
roots of the eigenvalue equation k2 � gkþ 1 ¼ 0 will be less than or equal to 1.

Since the error generally increases with the increase of the wavenumber, we consider the maximum wavenumber – the
Nyquist wavenumber, that is
k ¼ p=h: ð56Þ
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Fig. 6. Plot of 1D stability conditions for the conventional and the new methods. The method is stable when r 6 s.
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Substituting Eq. (56) into (55), we have
Fig. 8.
s; u a
h = 10 m
g ¼ 2� 4r2
XM1

m¼1

a2m�1; ð57Þ
where M1 ¼ int½ðM þ 1Þ=2�, int is a function to get the integer part of a value.
Therefore, the 1D stability condition is
2� 4r2
XM1

m¼1

a2m�1

�����
����� 6 2; ð58Þ
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(a) The conventional (left) and the new (right) methods, M = 4 
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(b) The conventional (left) and the new (right) methods, M = 10 
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(c) The conventional (left) and the new (right) methods, M = 20 

1D modeling records computed by the conventional and the new methods for different space point numbers. r; t and v are analytic solutions;
nd w are modeling results. Distances between source center and these three receivers are 100, 350 and 600 m, respectively. a2 = 2, v = 3000 m/s,
, s = 0.001 s.
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that is,
Fig. 9.
are mod
r 6
XM1

m¼1

a2m�1

 !�1=2

: ð59Þ
where a2m�1 > 0, which can be obtained from Eq. (20) for r < 1.
5.2. 2D and 3D stability conditions

Similarly, stability conditions for 2D, 3D acoustic wave equation modeling can be derived as follows, respectively
r 6 2
XM1

m¼1

a2m�1

 !�1=2

; ð60Þ

r 6 3
XM1

m¼1

a2m�1

 !�1=2

: ð61Þ
5.3. 1D stability calculation and analysis

To calculate and analyze the stability of the FD, we define 1D stability factor s as follows according to Eq. (59)
s ¼
XM1

m¼1

a2m�1

 !�1=2

: ð62Þ
For the conventional method, the FD coefficients depend only on M. We calculate the variation of s with M, which is
shown in Fig. 6(a). From the figure, we can see that the area of r for stable recursion decreases with the increase of M.
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(b) The conventional (left) and the new (right) methods, v = 5500m/s 

1D modeling records computed by the conventional and the new methods for different velocities. r; t and v are analytic solutions; s; u and w

eling results. Distances between source center and these three receivers are 100, 350 and 600 m, respectively. a2 = 2, h = 10 m, s = 0.001 s, M = 20.
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For the new method, the FD coefficients depend on both M and r. We calculate the variation of s with M and r, shown in
Fig. 6(b), where r ranges from 0.01 to 0.99 and M ¼ 2;4;10;20. The figure demonstrates that r 6 s. Therefore, the new meth-
od is always stable when r 6 1 since the FD coefficients are designed for the given M and r.

5.4. 2D stability calculation and analysis

The 2D stability factor s is defined as follows according to Eq. (60)
Fig. 10.
are mod
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analytic
a2 = 2,
s ¼ 2
XM1

m¼1

a2m�1

 !�1=2

: ð63Þ
Trace No. 

T
im

e 
(m

s)
 

0 

50 

100 

150 

200 

250 

Trace No.

T
im

e 
(m

s)
 

0

50

100

150

200

250

(a) The conventional (left) and the new (right) methods, τ = 0.002s 
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(b) The new method, τ = 0.003s 

1D modeling records computed by the conventional and new methods for different time steps. r; t and v are analytic solutions; s; u and w

eling results. Distances between source center and these three receivers are 100, 350 and 600 m, respectively. a2 = 2, v = 3000 m/s, h = 10 m, M = 20.
ventional is unstable when s = 0.003.
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(a) The conventional method, τ = 0.001s (b) The new method, τ = 0.003s 

1D modeling records computed by the conventional and the new methods for different time steps with the low-order accuracy. r; t and v are
solutions; s; u and w are modeling results. Distances between source center and these three receivers are 100, 350 and 600 m, respectively.

v = 3000 m/s, h = 10 m, M = 4.
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Fig. 7(a) shows the variation of stability factor s with M and r for the new method. When r is large, the new method is unsta-
ble. We calculate the maximum value of s satisfying Eq. (60), which is shown with the conventional method in Fig. 7(b). The
figure demonstrates that the new method can adopt a larger r than the conventional method when M > 1.

6. Modeling examples

6.1. 1D modeling

In all the 1D numerical modeling examples shown in this paper, the following initial conditions are used
Fig. 12
velociti
source
h = 2 m
pðx; tÞjt¼0 ¼ ðx� x0Þe
� a2

4h2ðx�x0Þ2 ; ð64aÞ
@pðx; tÞ
@t

����
t¼0
¼ 0; ð64bÞ
where x0 is the location of the source center, and a2 is an attenuation coefficient.
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(a) The nearly analytic solution 
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(b) The conventional method, τ = 0.001s 

. 1D modeling records for an inhomogeneous model computed by the conventional and the new methods. The model has four layers, whose
es are 2500, 3000, 2600 and 3100 m/s, respectively, from shallow to deep. The depths of three interfaces are 305, 505 and 605 m, respectively;
depth is 100 m, a2 = 1.5. (a) The nearly analytic solution, calculated by the 2nd-order FD method with a very small grid size and time step, that is,
, s = 0.00025 s, M = 1. For (b), (c) and (d), h = 10 m, M = 10.
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Both the conventional and the new FD methods are used to simulate acoustic wave propagation in 1D homogeneous
media. v is 3000 m/s, the grid size h is 10 m. Fig. 8 shows the seismic records computed by the conventional and the
new methods for different space point numbers. The figure demonstrates that the accuracy increases with the increase
of space point number. Compared with the analytic solutions, the modeling results from the new method show less disper-
sion than the conventional method, and the waveforms retain their shapes better than the conventional method. Fig. 9
shows the modeling records for different velocities. The variation of the velocity affects the results of the conventional
method more than the new method because the FD coefficients of the new method depend on velocity. Fig. 10 shows
the modeling records by the conventional and the new methods for different time steps. The records computed by the con-
ventional method in Figs. 8(c) and 10(a) show that the dispersion increases with increasing time step. However, comparing
Figs. 8(c), 10(a) and (b), we find that the dispersion of the new method decreases with the increasing time step. Since the
conventional method is unstable and the new method is stable and more accurate when s ¼ 0:003, the new method can
adopt a larger time step in the modeling given by the same discretization. Fig. 11 shows the records with the low-order
accuracy, which also demonstrates that the new method can use a larger time step and obtain a better result at the same
time.

Next, we use the conventional and the new methods to perform numerical modeling for an inhomogeneous model.
The involved parameters are listed in the figure; the records obtained by the numerical modeling are shown in
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Fig. 12 (continued)
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Fig. 12. Down-going (i.e., transmission) and up-going (i.e., reflection) waves can be clearly seen in this figure. Fig. 12(a) is
the nearly analytic solution, calculated by the 2nd-order FD method with a very small grid size (i.e., 2 m) and time step
(i.e., 0.00025 s). Note that for the 2nd-order FD, the new method and the conventional method are the same. Fig. 12(b)
and (c) are calculated by the conventional method for different time steps (i.e., 0.001 and 0.002 s). The record has lower
dispersion for the smaller time step, which coincides with Fig. 3(a). Variations of transmission waveform can be clearly
seen in Fig. 12(b) even for the smaller time step. Fig. 12(c) shows large dispersion because the waveform in the record
changes significantly with the increase of receiver depth. The reason is that the conventional method is of 2nd-order
accuracy (see Fig. 1(a)) and thus accurate modeling results can be obtained only by using a very small grid size and time
Fig. 13. 2D modeling snapshots and records for a homogeneous model computed by the conventional and the new methods. v = 3000 m/s. The model size is
2000 m � 2000 m. s = 0.001 s, h = 10 m, M = 10. The source is located in the model center. A one-period sine function with 50 Hz frequency is used to
generate vibration. No absorbing boundary conditions are used in the modeling.
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step, or very low frequencies, or very low velocities. However, the accuracy order of the new method increases with the
increase of the length of FD stencil (see Fig. 1(b)), the dispersion of the new method depends mainly on the length of
spatial FD stencils and little on velocities and time steps (see Figs. 2(b) and 3(b)), which means that a larger time step
can be used in the modeling as long as the Courant number is not greater than 1 to maintain the modeling accuracy
and decrease the calculation amount. Fig. 12(d) displays the modeling records by the new method with a larger time step
(i.e., 0.003 s). The records retain the waveform very well for different receiver depths and very close to the nearly analytic
solution of Fig. 12(a), showing that the new method has greater accuracy, and higher efficiency that the conventional
method.

6.2. 2D modeling

In this section, we show results from numerical modeling by the conventional and the new methods using a 2D homo-
geneous model and an inhomogeneous model under the same discretization.

Fig. 13 shows the modeling snapshots and records for the homogeneous model. The waveform corresponding to the
new method retains its shape better than that by the conventional method, which demonstrates that the new method
has greater accuracy and smaller dispersion. Fig. 14 shows the modeling snapshots and records for a so-called 2D
Society of Exploration Geophysicists/European Association of Geoscientists and Engineers (SEG/EAGE) salt model. Here,
we simply extended the model spatially to avoid reflections from the top and other edges of the model. Variations of
waveform resulting from grid dispersion effects can be seen in Fig. 14(b) and (f) by the conventional method. However,
Fig. 14(c) and (g) show that the new method maintains the waveform better and thus has smaller dispersion. The mod-
eling results demonstrate that the new 2D method has greater accuracy and smaller dispersion than the conventional
method.
(d) Snapshots at 1.2s by the conventional (left) and the new (right) methods 
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Fig. 13 (continued)



Y. Liu, M.K. Sen / Journal of Computational Physics 228 (2009) 8779–8806 8797
7. Discussion

We discuss three issues. The first is the influence of FD stencil length on numerical modeling for inhomogeneous media.
The second is the choice of optimal FD stencil length to balance the modeling accuracy and efficiency. The third is an exten-
sion of our method to high-order staggered-grid FD for the acoustic wave equation where the density is inside a partial deriv-
ative. As examples for these three issues, we only discuss the 1D case.
7.1. Influence of FD stencil length

We use numerical modeling tests to investigate the influence of FD stencil length on the acoustic wave equation modeling
for a 1D inhomogeneous model. The model has 10 layers, whose thicknesses vary from 20 to 50 m and velocities vary from
2500 to 5000 m/s. An analytic solution is obtained by the 2nd-order FD modeling with a very small grid size (2 m) and time
step (0.00025 s). Different lengths of FD stencils are used to perform numerical modeling by the new method with a large
grid size (10 m) and time step (0.002 s). The detailed parameters for the model and modeling are shown in the caption of
Fig. 15. A lower frequency source is adopted in Fig. 15(a) and a higher frequency source is used in Fig. 15(b). From the figure,
it follows that

� The records change little for different FD stencil lengths when the source frequency is lower and they are almost identical
to the nearly analytic solution.

� The records vary substantially with FD stencil length for the higher frequency source. With the increase of the FD stencil
length, the modeling accuracy increases and the record gradually approaches the nearly analytic solution.
(a) The SEG/EAGE salt model 
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(b) Snapshot at t=1.6s by the conventional method 

Fig. 14. 2D modeling snapshots and records for the SEG/EAGE salt model, respectively, computed by the conventional and the new methods. s = 0.002 s,
h = 20 m, M = 20. The source is located at (6000 m, 20 m). A one-period sine function with 20 Hz frequency is used to generate vibration. The depth of
receivers is 20 m.
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We can conclude that even when the length of FD stencil is significantly larger than the thicknesses of layers, the results
are quite satisfactory. The reason is that the model is discretized accurately here. In practice, it is difficult to discretize a mod-
el using very fine grids everywhere since the number of grid points becomes very large which leads to large memory and
enormous computation time.

7.2. Optimal FD stencil length

It is known that the accuracy and the calculation amount of FD modeling are directly proportional to the FD stencil length
and are inversely proportional to the grid size and the time step. When the FD stencil length is increased, the accuracy and
the calculation amount of modeling are also increased. To maintain the modeling accuracy, the grid size and the time step
can be increased at the same time. Therefore, for a given accuracy of modeling, there is a tradeoff between the accuracy and
the calculation amount, which depends on the FD stencil length, the grid size and the time step. We can possibly find an
optimal FD stencil length that provides the minimum calculation amount.

For 1D acoustic wave equation modeling, the total number of multiplication operations is NM and the total number of
addition or subtraction operations is NA given by (Appendix A)
NM ¼
4p2f 2

maxLT
vminrmax

ðM þ 1Þ
b2

max

; NA ¼ 2NM; ð65Þ
where L and T are the spatial length and the temporal length of the modeling, respectively, vmin is the minimum velocity, fmax

is the maximum frequency of the wavefield, rmax is the maximum Courant number and rmax 6 1; b ¼ kh; bmax is determined
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(c) Snapshots at t=1.6s by the new method 
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(e) Shot record by the new method 
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(f) Zoom of (d) 

x(m) 

t(
m

s)
 

6200 6600 7000 7800

0 
40

0 
80

0 
12

00
 

7400 

x(m) 

t(
m

s)
 

8000 8400 8800 9600

20
00

 
24

00
 

28
00

 
32

00
 

9200 

(g) Zoom of (e) 

Fig. 14 (continued)
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by Eq. (68) for a given positive number g and a given integer number M. For a given task of numerical modeling, L; T; vmin

and fmax are known. When rmax and g are given, the calculation amount is directly proportional to ðM þ 1Þb�2
max.

Fig. 16(a) shows the variations of bmax and ðM þ 1Þb�2
max with M for different values of g, it can be seen that

� bmax increases with the increase of M and g.
� There is a minimum in the function of ðM þ 1Þb�2

max. The optimal length of FD stencil can be determined from the minimum.
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Fig. 15. 1D modeling records computed by the new FD method with different FD stencil lengths for an inhomogeneous model. The model has 10 layers,
whose velocities are 2500, 3000, 3300, 3500, 3800, 4000, 5000, 3500, 4000 and 4500 m/s, respectively, from shallow to deep. Nine interfaces’ depths are
1205,1255, 1305, 1325, 1355, 1405, 1435, 1475 and 1405 m, source depth is 100 m, receiver depth is 200 m. r is nearly analytic solution, calculated by the
2nd-order FD method with a very small grid size and time step, that is, h = 2 m, s = 0.00025 s, M = 1. s; t; u; v and w are calculated by the new FD
method with different values of M, they are 2, 5, 10, 20 and 50, respectively, h = 10 m, s = 0.002 s.
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7.3. Time–space domain high-order staggered-grid FD method

To show how the proposed scheme can be extended to acoustic wave equation with variable densities, we develop a new
time–space domain high-order staggered-grid FD method. The details are given in Appendix B. The 1D wave equation, stag-
gered-grid FD coefficients, accuracy, dispersion and stability condition are given in Eqs. (75), (86) and (88)–(90),
respectively.

Next, we discuss the staggered-grid method by dispersion analysis, stability analysis and numerical modeling tests.
Fig. 17 shows the variation of the dispersion parameter d in Eq. (89) with kh for different space point numbers. Fig. 18

shows 1D stability conditions for the conventional staggered-grid and new staggered-grid methods. Nearly the same conclu-
sions can be drawn from Figs. 17 and 18 as those stated in Sections 4.1 and 5.3. The new staggered-grid FD method has great-
er accuracy than the conventional staggered-grid FD method and is always stable.

Fig. 19 shows the synthetic seismograms computed by the conventional staggered-grid and the new staggered-grid meth-
ods for a homogeneous model. Fig. 20 displays 1D modeling records for an inhomogeneous model. Figs. 19 and 20 also sug-
gest that the new staggered-grid method can adopt a larger time step and obtain more accurate results simultaneously.
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Fig. 17. Plot of 1D dispersion curves of the conventional staggered-grid and the new staggered-grid methods for different space point numbers. M = 2, 4, 10
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Fig. 18. Plot of 1D stability conditions for the conventional staggered-grid and the new staggered-grid methods. The method is stable when r 6 s.
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Fig. 19. 1D modeling records computed by the conventional staggered-grid and the new staggered-grid methods for different time steps. r; t and v are
analytic solutions; s; u and w are modeling results. Distances between source center and these three receivers are 100, 350 and 600 m, respectively.
a2 = 1.6, v = 3000 m/s, h = 10 m, M = 20. The conventional staggered-grid method is unstable when s = 0.003 s.
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Fig. 20. 1D modeling records computed by the conventional staggered-grid and the new staggered-grid methods for an inhomogeneous model. The model
has 10 layers, whose velocities and interfaces’ depths are the same as those listed in the caption of Fig. 15. Densities of the 10 layers are 2.0, 2.1, 2.2, 2.3, 2.4,
2.6, 2.8, 2.3, 2.6 and 2.7 g/cm3, source depth is 100 m, receiver depth is 200 m. a2 = 1.5. r is the nearly analytic solution, calculated by the 2nd-order
staggered-grid method with a very small grid size and time step, that is, h = 2 m, s = 0.00025 s, M = 1. Note that for the 2nd-order FD, the new method and
the conventional method are the same. s is calculated by the conventional staggered-grid method, h = 10 m, s = 0.0015 s, M = 10. t is calculated by the
new staggered-grid method, h = 10 m, s = 0.002 s, M = 10. The conventional staggered-grid method is unstable when s = 0.002 s.
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8. Conclusions

We have developed a new FD method in time–space domain for the acoustic wave equation based on the methods in
[39,40]; the FD coefficients are determined by the Courant number and space point number. The new method has greater
accuracy than the conventional method under the same discretization. Also, the new method can adopt a larger time step.
Dispersion analysis and numerical modeling results demonstrate that the new method has greater accuracy and can effec-
tively suppress the dispersion and maintain the waveform. We also developed a new time–space domain high-order stag-
gered-grid FD method for the acoustic wave equation with variable densities. This staggered-grid method has similar
advantages demonstrated by dispersion analysis, stability analysis and numerical modeling. This method can be extended
to solve other similar partial difference equations.
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Appendix A

This appendix gives the derivation of a relation between the calculation amount and the space point number for the 1D
acoustic wave equation modeling.

First, we derive the calculation amount of each recursion in the 1D acoustic wave equation modeling. Eq. (5) can be
rewritten as follows:
p1
0 ¼ b0p0

0 � p�1
0 þ

XM

m¼1

bm p0
�m þ p0

m

� �
; ð66Þ
where
b0 ¼ 2þ r2a0; bm ¼ r2am: ð67Þ
Note that the coefficients in (67) can be pre-computed. 2M + 2 additions or subtractions and M + 1 multiplications are in-
volved in the recursion equation (66).

Next, we derive the grid point number and the time step for the 1D acoustic wave modeling. Let b ¼ kh. From Figs. 1–3,
we can see that the modeling accuracy by the new method mainly depends on M when the Courant number r is not
very close to zero. For a given positive number g and a given integer number M, there exists a positive real number bmax

satisfying
jd� 1j 6 g when b 6 bmax: ð68Þ



Y. Liu, M.K. Sen / Journal of Computational Physics 228 (2009) 8779–8806 8803
d is defined by Eq. (49). If all the b values of the wavefield are less than bmax, the modeling results will have greater accuracy
for small value of g. Assuming that k is the wavenumber and f is the frequency, we have
b ¼ kh ¼ 2ph
k
¼ 2phf

v : ð69Þ
Assume that the maximum frequency of the wavefield is fmax, the minimum velocity is vmin, then
b 6 bmax when h 6
bmaxvmin

2pfmax
: ð70Þ
We obtain the maximum grid size hmax as
hmax ¼
bmaxvmin

2pfmax
: ð71Þ
Assume that the maximum Courant number used in the modeling is rmax. The modeling is stable when rmax 6 1. For a given
value of rmax, the maximum time step smax is given by
smax ¼
hmaxrmax

vmin
: ð72Þ
Assume the spatial length and the temporal length in the modeling are L and T, respectively, then the number of grid point nh

and the number of time step nt can be expressed as follows:
nh ¼
L

hmax
¼ 2pfmaxL

bmaxvmin
; ð73aÞ

nt ¼
T

smax
¼ vminT

hmaxrmax
¼ 2pfmaxT

bmaxrmax
: ð73bÞ
Finally, we obtain the relation between the calculation amount and the space point number M. That is, the total multi-
plication operation times NM and the total addition or subtraction operation times NA are
NM ¼ ðM þ 1Þnhnt ¼
4p2f 2

maxLT
vminrmax

ðM þ 1Þ
b2

max

; ð74aÞ

NA ¼ 2ðM þ 1Þnhnt ¼ 2NM: ð74bÞ
Appendix B

This appendix presents the new time–space domain high-order staggered-grid FD method for the 1D acoustic wave
equation.

The 1D acoustic wave equation with variable densities is (e.g. [5])
@

@x
1
q
@p
@x

� 
¼ 1

K
@2p
@t2 ; ð75Þ
where q is the density, K is the bulk modulus, K ¼ kþ 2l ¼ qv2; v is the velocity, p represents the pressure.
To numerically solve this wave equation, the 2nd-order FD formula (2) is used for the temporal derivative, and the con-

ventional ð2MÞ-order staggered-grid FD formula (e.g. [53,42]) for the first-order derivatives is used for the spatial derivatives
@p
@x
¼ 1

h

XM

m¼1

am p0
m�1=2 � p0

�mþ1=2

� 	
; ð76Þ
where
am ¼
ð�1Þmþ1

2m� 1

Y
16n6M;n – m

ð2n� 1Þ2

ð2n� 1Þ2 � ð2m� 1Þ2

�����
�����: ð77Þ
It can also be proved that when this ð2MÞth-order space domain staggered-grid FD stencil (76) with FD coefficients (77) and
the 2nd-order time domain FD stencil (2) are used to solve the 1D, 2D and 3D acoustic wave equations, the accuracy is of
2nd-order.

Next, we give the new staggered-grid FD method based on the time–space domain dispersion relation. Assuming that the
medium is homogeneous and substituting Eqs. (2) and (76) into (75), we have
1

h2

XM

m¼1

XM

n¼1

aman p0
mþn�1 � p0

m�n

� �
� p0

�mþn � p0
�m�nþ1

� �� �
� 1

v2s2 p1
0 þ p�1

0 � 2p0
0

� �
: ð78Þ
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Using the plane wave theory, substituting Eq. (6) into (78) and simplifying it, we obtain
� 4

h2

XM

m¼1

am sinððm� 0:5ÞkhÞ
" #2

� � 4
v2s2 ½sinð0:5xsÞ�2; ð79Þ
then
 XM

m¼1

am sinððm� 0:5ÞkhÞ � �r�1 sinð0:5xsÞ: ð80Þ
When all the am are changed to �am, the final results of FD modeling are the same, we take
XM

m¼1

am sinððm� 0:5ÞkhÞ � r�1 sinð0:5xsÞ: ð81Þ
Using the Taylor series expansion for sine functions, r ¼ vs=h and x ¼ vk, Eq. (81) can be changes as follows:
XM

m¼1

am

X1
j¼1

ð�1Þj�1ððm� 0:5ÞkhÞ2j�1

ð2j� 1Þ! � r�1
X1
j¼1

ð�1Þj�1ð0:5rkhÞ2j�1

ð2j� 1Þ! : ð82Þ
Comparing coefficients of k2j�1, we obtain
XM

m¼1

ð2m� 1Þ2j�1am ¼ r2j�2 ðj ¼ 1;2; . . . ;MÞ: ð83Þ
We can rewrite Eq. (83) as the following matrix form
10 30 � � � ð2M � 1Þ0

12 32 � � � ð2M � 1Þ2

..

. ..
. ..

. ..
.

12M�2 32M�2 � � � ð2M � 1Þ2M�2

2
666664

3
777775

1a1

3a2

..

.

ð2M � 1ÞaM

2
66664

3
77775 ¼

1
r2

..

.

r2M�2

2
66664

3
77775: ð84Þ
The coefficient matrix of Eqs. (84) is a Vandermonde matrix. Solving these equations, we obtain
am ¼
Q

16n<m½r2 � ð2n� 1Þ2�
Q

m<n6M½ð2n� 1Þ2 � r2�
ð2m� 1Þ

Q
16n<m½ð2m� 1Þ2 � ð2n� 1Þ2�

Q
m<n6M ½ð2n� 1Þ2 � ð2m� 1Þ2�

ðm ¼ 1;2; . . . ;MÞ: ð85Þ
Since it is necessary that r 6 1 in numerical modeling, Eq. (85) can be rewritten as
am ¼
ð�1Þmþ1

2m� 1

Y
16n6M;n – m

ð2n� 1Þ2 � r2

ð2n� 1Þ2 � ð2m� 1Þ2

�����
�����: ð86Þ
When r ¼ 0, the FD coefficients are the same as (77) from the conventional method (e.g. [42,53]). That is, the conventional
method is just a special case of the new method.

The absolute error can be obtained from Eq. (78) by using (79)
e ¼ 2
h

XM

m¼1

am sinððm� 0:5ÞkhÞ
" #2

� 2
vs

sinð0:5xsÞ

 �2

������
������: ð87Þ
With Eqs. (81)–(83), v ¼ x=k and r ¼ vs=h, Eq. (87) can be rewritten as follows:
e ¼ 2
h

X1
j¼1

XM

m¼1

ðm� 0:5Þ2j�1am

 !
ð�1Þj�1ðkhÞ2j�1

ð2j� 1Þ!

" #2

� 2
vs
X1
j¼1

ð�1Þj�1ð0:5rkhÞ2j�1

ð2j� 1Þ!

" #2
������

������
¼ 8

h2

X1
j¼1

ð�1Þj�1r2j�2ð0:5khÞ2j�1

ð2j� 1Þ!

" # X1
j¼Mþ1

XM

m¼1

ð2m� 1Þ2j�1am � r2j�2

 !
ð�1Þj�1ð0:5khÞ2j�1

ð2j� 1Þ!

" #�����
þ 2

h

X1
j¼Mþ1

XM

m¼1

ðm� 0:5Þ2j�1am

 !
ð�1Þj�1ðkhÞ2j�1

ð2j� 1Þ!

" #2

� 2
h

X1
j¼Mþ1

ð�1Þj�1r2j�2ð0:5khÞ2j�1

ð2j� 1Þ!

" #2
������: ð88Þ
Since the minimum power of h in the error function is 2M, the FD accuracy is ð2MÞth-order.
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Similar to Eq. (49), we define a parameter d as follows to describe 1D dispersion of staggered-grid FD
d ¼ vFD

v ¼ 2
rkh

sin�1 r
XM

m¼1

am sinððm� 0:5ÞkhÞ
 !

: ð89Þ
Using the conventional eigenvalue method of stability analysis, we obtain 1D stability condition as follows:
r 6
XM

m¼1

jamj
 !�1

: ð90Þ
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